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Abstract 

The concepts of information theory have been applied 
to the analysis of spatial array data in the maximum 
entropy method. The development is similar to that of 
Tsoucaris's maximum determinant method for phase 
determination. It is shown that a maximum deter- 
minant (of structure factors) corresponds exactly to a 
function of maximum entropy. The squared modulus of 
its Fourier transform formally approximates the true 
electron density. 

1. Introduction 

The use of information theory and the concept of 
entropy in the analysis of time series was described by 
Shannon & Weaver (1949). Burg (1967) developed an 
algorithm for the calculation of an estimate for the 
power spectral density of a uniformly sampled random 
process, which he called maximum entropy spectral 
analysis (MESA). This algorithm is equivalent to the 
determination of an autoregressive process, and is 
related to information theory in that the spectral 
density obtained corresponds to a maximum entropy 
estimate. 

McDonough (1974) has discussed the extension of 
the method to wavenumber estimation for spatial array 
data; its application to extrapolation of crystal- 
lographic structure-factor data and maximization of 
resolution has been investigated by Collins (1978). The 
fact that higher resolution is obtained by the maximum 
entropy method compared to classical methods of 
spectral analysis is one reason for its usefulness in data 
processing. 

A method for phase determination in crystallog- 
raphy, introduced by Tsoucaris (1970), and known as 
the maximum determinant method, has a formulation 
similar to that of the maximum entropy method. It is 
the purpose of this paper to show that the formalisms 
of the two methods are, in fact, equivalent. 

Ed#orial note: The similarity between this and the preceding 
paper, by Narayan & Nityananda [Aeta Cryst. (1982), A38, 
122-128],1 has been recognized and, although they represent 
completely independent work, they have been published together to 
facilitate comparison. 
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2. Information theory and the maximum entropy 
method 

We begin the description of the maximum entropy 
method with a review of its connection to information 
theory. Shannon & Weaver (1949) refer to the 
uncertainty of a process as its entropy, H. For a 
univariate continuous process with probability distri- 
bution p(x),  the entropy is 

0o  

H = - -  f p ( x ) l n p ( x ) d x .  (1) 
- - 0 0  

For a function of n variables this becomes 
oo oo 

H = -- f . . . f p ( x , ,  . . ., xn) 
--0(3 - - 0 0  

x ~ln p ( x l , . . . ,  x , )  dx 1 . . .  dx, .  (2) 

The form of the entropy expression is the same as 
that found in statistical mechanics, and it may be seen 
that, when the result of a process is certain, the entropy 
is zero; when all possible outcomes are equally likely 
(the most uncertain case), H is a maximum, equal to 
In n. 

The distribution p ( x )  which yields a maximum 
entropy when the standard deviation of x is fixed at a is 
Gaussian in form (Shannon & Weaver, 1949). Such a 
distribution gives the entropy expression 

H = In [(27"re) 1/2 O']. (3) 

In the multivariate case, with the second-order mo- 
ments ofp(x~ . . . . .  x,,) fixed at A U, 

A i j =  f . . .  f x i x j p ( x  l . . . .  , x , ) d x , . . . d x  n, (4) 

the form o f p ( x ~ , . . . ,  Xn) giving a maximum entropy is 
the Gaussian distribution having these moments: 

p ( x  I . . . .  , x,,) = (2n) - ' /z IAI -In exp{-½x' [A-~]x}. (5) 

In (5), A and IAI are respectively the matrix o f A  u and 
the determinant with elements A u, x is the vector of x, ,  
and ' indicates transpose. The corresponding entropy 
expression is 

H = In [(2/r.e) n/2 I AI 1/2]. (6) 

These concepts of information theory are related to 
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the development of Burg's maximum entropy method 
(Burg, 1967; McDonough, 1974), described as follows. 

A stationary random process will be given by x( t ) ,  

and its random variables or samples by x,,  n = 1 . . . . .  
N. Then the correlation coefficients between these 
random variables are 

R k = E ( x , , + k X *  ), (7) 

where E denotes the expectation value and * denotes 
the complex conjugate. Since the data set x 1 . . . . .  x N is 
finite, R k must be approximated: 

1 N - k  

~k = -~ ~ (Xn+k --  U) (X.  --  ~ )* ,  (8a )  

r t= l  

where 

1 u =  - ~  Xn 

n = l  

(8b) 

/~k = /~*k' k = - - ( N -  1) . . . . .  - 1 .  (8¢) 

Thus, the samples X l , . . . , x  N generate correlation 
samples/~0, ...,/~/~; K = N - 1. 

The sequence of correlation samples may be extefi- 
ded beyond the given data; that is, values for RK+ ~, 
RK+ z, . . .  may be obtained, even though the corres- 
ponding x K + 2, XK + 3 . . . .  are not given. The joint densit3; 
of the x,, and the hypothetical variable xK+ 2, for 
instance, is p(x~  . . . . .  XK+2); its entropy is 

oo oo 

H = --  .1" • • • I p ( x l  . . . . .  XK+ 2) 
--oO --OO 

x lnp(x  1 . . . . .  XK+E)dXl . . .  dxK+ 2. (9) 

The density distribution p ( x  I . . . . .  x K .  2) is chosen so 
that its first K + 1 second-order moments are the 
known /~0 . . . . .  /~K" and which maximizes the entropy 
(9). For real random variables xl . . . . .  xK+ 2, this 
density is 

p(Xl . . . . .  XK+2 ) = (27/;)-(K+2W2 i RK+ 1[--1/2 

x exp[--½x' R~ 1+1x], (10) 

where x is the vector of the x,, ' indicates transpose, and 

I 
- . . .  

< . . . . . . . .  • . . . .  5 : 2  . . . . . . . . .  

RK+I "'" /~0 / A 

This density has entropy 

H = In [(2~)tK+2)/21RK+~I 1/2]. (12) 

In the complex case, the corresponding density and 
entropy expressions are 

p(x~  . . . .  , XK+2 ) = 7u-(K+2) IRK+ 11-1 

xexp[--x' R~l+l xl (13) 

where ' now indicates conjugate transpose, and 

H =  In [(Tre) x+2 IRK+11]. (14) 

Maximizing either entropy expression (12) or (14) 
implies that the determinant of R~+ 1 must be maxi- 
mized with respect to R~+~. For any matrix M, 
Bodewig (1959) has shown that 

dlMI = IMI trace (M -~ dM). (15) 

Thus, differentiating IRK+ 1L with respect to R** ~ yields 

dlRK+l I = (--1)K+I IBI dR*+l,  (16) 

where 

I 
f i ,  Ro " "  f i * - l ~  

fie fil . . .  ~ 2I./ 
B= ~ . . . . . . . . . . . .  .';;"'~"'| (17) 

RK+I / ~  . . .  /~, |_j 

If the derivative (16) is set equal to zero to obtain the 
maximum, then this implies that the equation 

IBI = 0  (18) 

is solved for RK+ 1. 
Once RK+ 1 is found, the set/~0 . . . . .  /~r, RK+ 1 may 

be used to determine R~+ 2 in a similar manner, by 
considering the entropy of the joint density p ( x  I . . . . .  

X K + 2 ,  XK + 3)" 

3. The maximum determinant method 

Tsoucaris (1970) introduced a method for phase 
determination which he called the maximum deter- 
minant method, and which is derived from the 
conditional joint probability of a set of structure factors 
in a Karle-Hauptman determinant. The procedure 
allows the simultaneous determination of many struc- 
ture-factor phases. 

Inequality theory (Karle & Hauptman, 1950) shows 
that the non-negativity of the electron density function 
p(r) imposes the condition of non-negativity of a 
Karle-Hauptman determinant composed of the struc- 
ture factors. The maximum determinant rule states that 
the most probable combination of phases satisfying this 
condition is the one which maximizes this determinant 
(Tsoucaris, 1970). 

For this discussion we consider equal atoms in space 
group PI.  A normalized structure factor, Eh, is given 
by 

N 

E h =  N -1/2 Z exp(2rtih.(i), (19) 
j = l  

where h is a reciprocal-lattice vector, r.i is the position 
vector of the jth atom in the crystal, and N is the 
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number of atoms in the unit cell. The corresponding 
unitary structure factors are 

Uh : N -1/2 gh.  (20) 

The set of m normalized structure factors 
E l . . . . .  Ep, ..., E m are considered as random vari- 
ables. Correlation coefficients between these random 
variables are generated according to the Sayre (1952) 
equation: 

E k g h _  k : U h ,  (21) 

where h is a fixed vector, and the bar indicates average 
over k. 

We now let Ep = EL+hp , where the hp are fixed vectors 
and L is a random vector which sweeps out all 
reciprocal space. Then, for each pair of structure 
factors Ep and Eq, we have a fixed vector hp - hq, such 
that (L + hp) - (L + hq) = h p -  h a . The unitary 
structure factors corresponding to these vectors are 
tAp-ho = Veq. 

With the change of notation k = L + h e, h = h e -- hq, 
equation (2 l) may be rewritten 

EVE'S= Ueq; p , q =  1 . . . .  ,m.  (22) 

The unitary structure factors Ueq are the correlation 
coefficients between the random variables Ep and Eq, 
and are assumed to be fixed and known. They form a 
matrix whose determinant is the non-negative Karle-  
Hauptman determinant 

D m = det(Ueq) > 0. (23)  

The following determinantl Am+ 1, may be formed 
from D m by appending the structure factors E l, . . . ,  E m 
as a last row and column, the last element being N. 

1 U12 . . .  Ul,n El[ 
I 

1 U21 1 . . .  E2[ 
Am+'=- -N Lr~i ............ :]': ....... i ..... j(,~[]. (24) 

E , . . .  E _  m N I  

The probability law p(E~, . . . ,  Era) under the condi- 
tion that the Ueq are fixed and known is the Gaussian 
distribution (Tsoucaris, 1970): 

p ( E , , . . . ,  Era) = (27/:) -m/2 O~n 1/2 exp(-½am) (25a) 

o r  

p(E  1 . . . . .  E m) = (2~r) -m Dm '/2 exp(-Qm) (25b) 

for the centrosymmetric and non-centrosymmetric 
cases, respectively. Here, Qm is given by 

Dm - -  Am+ l 
Qm = E' [U -l] E =  N , (26) 

Dm 

where E is the vector of the E e and [ U -l ] is the inverse 
of the matrix of the Ueq. 

When the magnitudes of the E;  are known, the 
probability law (25) becomes an expression for the 
probability of the phases or signs of the structure 
factors. The maximum probability is reached when 
Am+ l is a maximum; this, in turn, leads to the most 
probable combination of the phases. 

4.  D i s c u s s i o n  

Comparison of the maximum entropy and maximum 
determinant methods clearly shows their similar 
developments. From the probability distributions of the 
random variables to the construction of the deter- 
minants which are maximized, the formulations of the 
two methods are completely analogous, save for one 
step--the calculation of the correlation coefficients. 

The maximum determinant method, as put forth by 
Tsoucaris, makes use of correlation coefficients ob- 
tained from the Sayre equation (21). The approxi- 
mation inherent in this equation, however, is not crucial 
to the development of the maximum determinant 
method, for there is an exact foundation upon which it 
may be based. Specifically, the determinant maximum 
corresponds exactly to a maximum of entropy in a 
function related to electron density. 

The imposition of positivity upon the electron 
density could take many forms, but it is from the 
perfectly general form 

p(r) = Ig(r)l 2 > 0 (27) 

that G(h), the function of maximum entropy, is found. 
Equation (27) allows us to write 

1 
F h =  -~- Z Gk G*-k, (28) 

k 

where Gh and Fh are the Fourier transforms of g(r) and 
p(r), respectively. Then Gh, corresponding to x n of §2, 
represents the random variables, whose existence is 
ensured by the generalized Fej6r-Riesz theorem 
(Papoulis, 1973). 

No distinction is intended here between Fh and its 
normalized equivalent Eh, but F h  is more convenient to 
use. This arises from the fact that structure factors 
obtained from the completely general equation (28) are 
exact correlation coefficients, analogous to R k of the 
maximum entropy method. Hence, the covariance 
matrix constructed of Fh corresponds exactly to the 
matrix of estimates /~k, whose determinant is analo- 
gous to Tsoucaris's Dm. Phase determination or 
extrapolation, then, corresponds to maximization of the 
determinant of the extended matrix F, order m + 1,just 
as for I R r + l I and A m + 1. 

In the estimation of RK+ 1 from the finite data record 
no new information is used. However, in the crystallo- 
graphic case, new information is employed, since the 
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structure-factor magnitudes are obtained from experi- 
ment. Nevertheless, the extrapolation of data, in both 
cases, corresponds to determination of an analytic 
function whose squared modulus is a function of 
maximum entropy measure. The definition for entropy 
measure is that given by Ponsonby (1973), 

parallel form and shown to be equivalent. With only the 
restrictions that (electron) density be positive, and that 
matrices and determinants be of small enough order to 
be positive definite, the two equivalent formulations 
yield identical results and provide an information- 
theoretic interpretation of the maximum determinant. 

H '  = f In p(r) dV,, (29) 
v 

V being the unit-cell volume. Ponsonby emphasizes 
that this is strictly only a measure of relative entropy of 
the real power spectrum of an underlying signal. In this 
sense maximum H'  corresponds to maximum entropy 
measure p(r) = Ig(r)l z, and a maximum-entropy 
distribution function for Gh, the transform of g(r). 
Equation (6) shows that such a distribution requires a 
maximum determinant D,,. Moreover, Ponsonby points 
out that entropy maximization provides a unique, 
smooth autocorrelation function in exact agreement 
with its observed values which concedes greatest 
possible ignorance of its unobserved values. This 
corresponds to the liberty of choosing by unspecified 
criteria the vectors (L' + hp) which direct the 
formulation of D m and allow as many different 
appended rows and columns in Am+ 1 as there may be 
reasonable choices of L'. 

The formalisms of the maximum entropy and 
maximum determinant methods have been cast in 

This work was supported in part by the Robert A. 
Welch Foundation through Grant A-742, and by the 
Research Corporation through a Cottrell Research 
Grant. 
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BY IAN HEDLEY BRUNSKILL AND WULF DEPMEIER 

Universitd de Gen~ve, Chimie Appliqude, 30 quai Ernest A nsermet, CH 1211 Gen~ve, Switzerland 

(Received 21 May 1981 ; accepted 4 August 1981) 

A b s t r a c t  

By measuring the birefringence on (001) platelets of 
PAMC as a function of temperature, previously 
determined phase transitions have been confirmed. 
Large effects were measured on passing through the 
normal-incommensurate ~ --, y transition and through 
the normal-commensurate ~ --, e transition, whereas 
the commensurate-normal e--, 6 and the incommen- 

* Bis(n-propylammonium) tetrachloromanganate. 
t Bis(ethylammonium) tetrachloromanganate. 
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surate-normal y ~f l  transitions are less pronounced, 
in accordance with former thermoanalytic studies. 
A comparison is made with a similar study on EAMC. 
The optical anisotropy is discussed for both com- 
pounds in terms of the structural changes of the 
perovskite-type layers. Power laws of the form An ,,, 
(1 - -  T/Tc )213 are used to describe the birefringence where 
appropriate. By analyzing systematic extinctions 
amongst main and satellite reflexions, the e phase of 
PAMC is proposed to be a (3 + 1)-dimensional com- 
mensurately modulated version of the fi phase. The 
superspace group is determined to be pAbma With the - -  s i l "  
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